Phylogenetic diversity of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deep-sea hydrothermal vents and cold seeps

نویسندگان

  • Andrew J. Reed
  • Ruth Dorn
  • Cindy L. Van Dover
  • Richard A. Lutz
  • Costantino Vetriani
چکیده

Microbial communities of methanogenic, sulfate-reducing and methanotrophic prokaryotes from deepsea environments were investigated by molecular phylogenetic analysis of the deduced amino acid sequences of the genes encoding for the methyl coenzyme M reductase (mcrA), dissimilatory sulfite reductase (dsrAB) and particulate methane monoxygenase (pmoA), respectively. Clone libraries of PCR amplified genes were constructed using DNA extracted from deep-sea vent chimneys (Rainbow and Logatchev hydrothermal vent fields, Mid-Atlantic Ridge, Atlantic Ocean; 91N East Pacific Rise, Pacific Ocean) and from vertically subsampled sediment cores from cold-seep areas (Blake Ridge, western Atlantic Ocean; Florida Escarpment, Gulf of Mexico). Recombinant clones were screened by RFLP and representative dsrAB, mcrA and pmoA genes were sequenced. The dsrAB sequences grouped primarily within the orders Desulfobacterales, Syntrophobacterales and the Gram-positive order Clostridales. Coldseep mcrA sequences were distributed among the ANME-2c, -2d and -2e groups, which were previously shown to be associated with the anaerobic oxidation of methane. This study also reports the first mcrA sequences from a high-temperature, black smoker chimney (Logatchev) to group within the ANME-2e subgroup. The majority of the remaining hydrothermal vent mcrA sequences were primarily related to thermophilic members of the anaerobic, methanogenic order Methanococcales. A shift in the dominant ANME-2 group with depth in the sediment for both Florida Escarpment and Blake Ridge mcrA libraries was detected. ANME-2d related clones were detected in the top zones of both cores, with the frequency of ANME-2e related clones increasing with depth. All pmoA sequences retrieved from the cold-seep sites were found to be related to Type I methanotrophic members of the g-proteobacteria, and were primarily distributed among three major clusters of sequences. No Type II pmoA sequences related to methanotrophic members of the a-proteobacteria were detected, suggesting that the methanotrophic communities in these cold-seep areas are dominated by Type I g-proteobacteria. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global dispersion and local diversification of the methane seep microbiome.

Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain...

متن کامل

Adaptive radiation of chemosymbiotic deep-sea mussels

Adaptive radiations present fascinating opportunities for studying the evolutionary process. Most cases come from isolated lakes or islands, where unoccupied ecological space is filled through novel adaptations. Here, we describe an unusual example of an adaptive radiation: symbiotic mussels that colonized island-like chemosynthetic environments such as hydrothermal vents, cold seeps and sunken...

متن کامل

Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel.

The coexistence of two phylogenetically distinct symbiont species within a single cell, a condition not previously known in any metazoan, is demonstrated in the gills of a Mid-Atlantic Ridge hydrothermal vent mussel (family Mytilidae). Large and small symbiont morphotypes within the gill bacteriocytes are shown to be separate bacterial species by molecular phylogenetic analysis and fluorescent ...

متن کامل

Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblag...

متن کامل

Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents.

Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009